Crystal Structure of $\mathbf{C}_{\mathbf{8}} \mathrm{Al}_{\mathbf{2 . 1}} \mathbf{B}_{\mathbf{5 1}}$

By A. J. Perrotta,* W.D.Townes and J.A. Potenza \dagger
Institute for Exploratory Research, U.S. Army Electronics Command, Fort Monmouth, New Jersey 07703, U.S.A.

(Received 18 September 1967 and in revised form 24 June 1968)

Abstract

X-ray analysis of $\mathrm{C}_{8} \mathrm{Al}_{2 \cdot 1} \mathrm{~B}_{51}\left(C 2 / m 2 / c 2_{1} / m ; a=5 \cdot 690, b=8 \cdot 881, c=9 \cdot 100 \AA\right.$) based on full-matrix refinement of complete three-dimensional data gives a distorted hexagonal close-packed B_{12} icosahedral structure in which each icosahedral B atom is six coordinated. Half of the icosahedral B atoms form single B-B bonds between icosahedra; the remaining half are linked to C by single B-C bonds. Statistically distributed intericosahedral B atoms on a center of symmetry complete a tetrahedral environment about C and develop linear C-B-C chains similar to those found in rhombohedral boron carbide. Indeed, all B-B and B-C bond distances closely approximate values obtained for rhombohedral boron carbide. Aluminum atoms are located on partially occupied sites between icosahedra and in all cases Al-B and Al-C nearest neighbor contacts are at least $0.2 \AA$ smaller than the sum of the appropriate covalent radii. Interestingly, an Al atom competes statistically with the B atom in the $\mathrm{C}-\mathrm{B}-\mathrm{C}$ chain such that when Al is present, B is not. The stoichiometry presented here leads to questions concerning the bonding schemes described in previous analyses based on different stoichiometries. Isotropic refinement gave $R_{F}=0.050$ for 762 observed diffraction maxima.

Introduction

Crystal structures of compounds with high boron content have been of continual interest because boron carbide, the polymorphs of elemental boron and the compound considered here all contain B_{12} icosahedra, which, in conjunction with intericosahedral atoms, give interesting valence structures. Of the higher aluminum borides, only the structure of AlB_{10} has been reported (Will, 1963, 1966, 1967), and in this case there has been uncertainty regarding the stoichiometry and the nature of the intericosahedral atoms, in particular concerning the possible presence of carbon. The first point, stimulated by the non-integral number of $5 \cdot 2 \mathrm{AlB}_{10}$ molecules per unit cell, was considered (Lipscomb \& Britton, 1960) in an illuminating discussion of the valence structures of the higher borides. One report (Matkovich, Economy \& Giese, 1964) states that the true stoichiometry of AlB_{10} is $\mathrm{C}_{4} \mathrm{AlB}_{24}, Z=2$, and that carbon, necessary for crystal formation, links two icosahedra to form infinite chains. Additional results for $\mathrm{C}_{4} \mathrm{AlB}_{24}$ were then submitted (Will, 1968) which suggested that C atoms joined three icosahedra and formed C-Al-C chains. Recently, in an excellent review article (Hoard \& Hughes, 1967), it was suggested that the 'ternary compound of ideal formula for Al, B and C is $\mathrm{C}_{4} \mathrm{AlB}_{26}$, $Z=2$, and that carbon is present in $C-B-C$ chains analogous to those in the structure of rhombohedral boron carbide. All Al atoms were assumed to be interstitial. From independent X-ray data collected on the same crystal used in the analysis based on AlB_{10}, which we

[^0]now conclude to have the formula $\mathrm{C}_{8} \mathrm{Al}_{2 \cdot 1} \mathrm{~B}_{51}$ (per unit cell), we report the detailed structure of this interesting boride.

Structure determination

The space group, cell dimensions and density previously determined at this laboratory (Kohn, Katz \& Giardini, 1958) are: $C 2 / m 2 / c 2_{1} / m ; a=5.690 \pm 0.001, b=8.881 \pm$ $0.001, c=9.100 \pm 0.002 \AA ; \varrho=2.537 \pm 0.003 \mathrm{~g} . \mathrm{cm}^{-3}$. \bar{A} total of 762 observed reflections were collected for $H k l$, $0 \leq H \leq 11$ with Mo $K \alpha$ radiation and a moving crystal, moving counter technique with a G.E. XRD-6 semiautomatic diffractometer. In addition, 471 reflections with $\sin \theta / \lambda \leq 1.21$ were too small to be observed. Intensity data were corrected for Lorentz and polarization effects and converted to a set of structure factors. The tabular crystal had dimensions $0.57 \times 0.49 \times$ 0.23 mm ; absorption corrections were not made. Unit weights were used for all refinements; however, the sensitivity of the final atomic parameters to the choice of weighting scheme was tested by refinement with weights inversely proportional to $|F|$. Although R_{F} increased slightly, the two methods showed no coordinate differences greater than 1.5 times the standard error of the determination (Table 1), and all but two were within the error.

A structure factor calculation based on coordinates given previously (Matkovich, Economy \& Giese, 1964) yielded $R_{F}=0.35$ for the five unique icosahedral B atoms. An initial three-dimensional Fourier synthesis was calculated by the use of 180 large structure factors, none of which changed sign during the remaining stages of the analysis. In addition to the B atoms of the icosahedra, four other maxima were located, one approximately as large as a B atom, the remaining three between one-sixth and one-third of a B atom in height.

Utilizing only the B scattering curve, two cycles of least-squares refinement of the icosahedral atoms (1-5), the larger intericosahedral maximum (6) and one well-defined smaller maximum (9), followed by isotropic refinement of all temperature factors except that for atom 9 since full occupancy there was not expected lowered the discrepancy index to $0 \cdot 15$. The temperature factors of the icosahedral atoms were self-consistent and ranged from 0.45 to $0.52 \AA^{2}$, while that for atom 6 was $0 \cdot 18$. The remaining two maxima, in chemically unreasonable positions, were not tested; instead, a second three-dimensional electron density map was calculated yielding three additional small maxima. The first of these, atom 8, was added (with an adjusted multiplicity corresponding to its peak height); two cycles of refinement reduced R_{F} to $0 \cdot 114$. A second maximum further reduced R_{F} to 0.084 . The last maximum from the Fourier synthesis was added but did not refine; it was not found in the final electron density map calculated from all observed structure factors. Finally, the atom multipliers of atoms 7-9 were refined. This, followed by coordinate and temperature refinement, gave $R_{F}=0.067$ for a 9 atom all-boron structure.

In an attempt to determine the atomic numbers of intericosahedral atoms, bond distances were calculated. Intraicosahedral B-B linkages varied from 1.77 to $1.85 \AA$ in agreement with expectations; atom 6 was linked to three icosahedral B atoms at $1.62 \AA$, a value very close to the sum of the covalent radii of B and C (0.9 and $0.77 \AA$, respectively). This, coupled with the low temperature factor of atom 6 and a careful electron microprobe analysis of the diffraction crystal itself which gave a C concentration at about the level of the boron carbide standard, allowed assignment of C to this position. Approximately $10 \cdot 3 \mathrm{wt} . \% \mathrm{Al}$ was also determined by microprobe analysis, but since C analysis is difficult by this method owing to hydrocarbon cracking and since no B analysis could be performed, the number of Al atoms could not be fixed with certainty. However, it appeared to be much closer to that required for $\mathrm{C}_{4} \mathrm{AlB}_{24}, Z=2$ than that for $\mathrm{AlB}_{10}, Z=5 \cdot 2$.

The atomic arrangement about atom 9 shown in Fig. 1 was interpreted as follows. Atom 9 is on a center of symmetry fixing its coordinates. The carbon-atom 9 distance of $1.46 \AA$ eliminates Al at that site leaving only C and B as possibilities. The extremely short 7-9 and non-centrosymmetrically related 7-7 distances of $1 \cdot 20$ and $123 \AA$ respectively, eliminate both the simultaneous occupancy of sites 7 and 9 and uniform occupancy of site 7 . Thus we concluded that when site 9 was occupied, 7 must be vacant, and that when 9 was vacant, at most a centrosymmetrically related pair of atoms was present at site 7. Other possibilities to include large thermal vibrations about the center of symmetry which could encompass site 7 or the presence of a single statistically distributed atom between 7 and 9 were not excluded. The latter possibility was eliminated on the basis of a structure factor calculation with a single atom replacing 7 and 9 ; this atom refined back to the
center of symmetry. Large anisotropic thermal vibrations of atom 9 were subsequently excluded on the basis of anisotropic temperature factor calculations. The 6-7 distance of $1.77 \AA$ is smaller than the sum of the covalent radii of $\mathrm{Al}(1.4 \AA)$ and C , but greater than the sum of C and B so that no conclusions about atom 7 could be drawn on that basis. Atom 8, with nearest neighbor distances ranging from 1.95 to $2.01 \AA$, was considered to be aluminum.

At this point, the atoms occupying sites 9 and 7 were still in doubt and a test of the $\mathrm{C}_{4} \mathrm{AlB}_{24}$ structure helped the atomic assignments. Atoms $1-5$ were again assigned as B (fully occupied B icosahedra giving the required 48 B atoms), atom 6 was considered to be C giving the required 8 C atoms; this left three partially occupied intericosahedral sites which had to be aluminum. Complete refinement of all parameters gave $R_{F}=0.056$ for atomic aluminum and $R_{F}=0.055$ for triply ionized aluminum which is necessary to account for the 6-9 bond length of $1.47 \AA$. Both calculations gave approximately 2.6 Al atoms (versus two for the stoichiometry) for the three partially filled sites. The assignment of triply ionized Al to the center of symmetry was considered unlikely since it would not be consistent with a minimum of charge transfer (Hoard \& Hughes, 1967). Additionally, the carbon 9 distance of $1.467 \AA$ was strikingly similar to the short B-C distance of $1.435 \AA$ found in boron carbide. Therefore, a model with B at the center of symmetry was tested and similar complete refinement gave $R_{F}=0 \cdot 053$. Atom 9 was considered to be boron, but the presence of some carbon could not be excluded.

A model of the nine atom structure showed holes large enough to accommodate additional atoms, probably aluminum; hence, a difference Fourier based on signs determined from all B and Catoms was calculated. Two large maxima corresponding to atoms 7 and 8 were observed; in addition, two extremely small peaks within the holes were detected at about the resolution of the map. These were all added as fractional Al reducing R_{F} to 0.050 ; one of these would not refine and was assumed false. The small real maximum added only $0 \cdot 15 \mathrm{Al}$ atoms to the unit cell. Other models to include the presence of C (Hoard \& Hughes, 1967), Al (Lipscomb \& Britton, 1960) or vacancies in the icosahedra

Fig. 1. Bond distances in the vicinity of the center of symmetry. $r_{\mathrm{C}}=0.77 \AA ; r_{\mathrm{B}} \leq 0.9 \AA: r_{\mathrm{Al}}=1.4 \AA$.

Table 1. Final atomic parameters*

	Type	Will \dagger	x	$10^{4} \sigma_{x}$	$x \quad y$	$10^{4} \sigma_{y}$	z	$10^{4} \sigma_{z}$	B	$10^{2} \sigma_{B}$	Multiplier	$\sigma_{\text {mult }}$	Fractional occupancies
1	B	B(5)	$0 \cdot 1615$	3	$0 \cdot 0170$	2	$\frac{3}{4}$	-	0.4444	2	8	-	1.00
2	B	B(4)	$0 \cdot 3403$	3	$0 \cdot 1805$	2	$\frac{3}{4}$	-	$0 \cdot 5076$	2	8	-	1.00
3	B	B(1)	0	-	$0 \cdot 0467$	2	0.4138	2	0.4412	2	8	-	1.00
4	B	B(2)	$\frac{1}{2}$	-	$0 \cdot 2492$	2	$0 \cdot 5902$	2	0.4341	2	8	-	1.00
5	B	B(3)	$0 \cdot 2543$	2	$0 \cdot 1518$	1	$0 \cdot 3480$	1	0.4856	1	16	-	1.00
6	C	C	$\frac{1}{2}$	-	$0 \cdot 1529$	2	0.4390	2	0.4135	1	8	-	1.00
7	Al	$\mathrm{Al}(3)$	0.3175	12	0.0414	7	$0 \cdot 5524$	7	0.4878	7	0.937	0.023	0.06
8	Al	$\mathrm{Al}(1)$	0	-	$0 \cdot 2105$	5	$\frac{3}{4}$	-	0.3784	45	$0 \cdot 651$	0.014	$0 \cdot 16$
9	B	$\mathrm{Al}(2)$	$\frac{1}{2}$	-	0	-	$\frac{1}{2}$	-	$0 \cdot 6446$	3	$3 \cdot 67$	$0 \cdot 04$	$0 \cdot 92$
10	Al	Al	0	-	$0 \cdot 16$	-	$0 \cdot 62$	-	0.45	-	$0 \cdot 12$	-	$0 \cdot 02$
	β_{11}	$\sigma \beta_{11}$	β_{22}		$\sigma \beta_{22}$	β_{33}	$\sigma \beta_{33} \quad \beta_{12}$		$\sigma \beta_{12}$	β_{13}	$\sigma \beta_{13}$	β_{23}	$\sigma \beta_{23}$
1	$31 \cdot 5$	$2 \cdot 9$	$14 \cdot 8$		$1 \cdot 2$	$13 \cdot 6$	$1 \cdot 1-5 \cdot 8$		1.5	0	-	0	-
2	$55 \cdot 8$	$3 \cdot 3$	$9 \cdot 4$		$1 \cdot 1$	$15 \cdot 2$	$1 \cdot 1-1 \cdot 0$		$1 \cdot 6$	0	-	0	-
3	$41 \cdot 3$	$2 \cdot 9$	$13 \cdot 0$		$1 \cdot 2$	$11 \cdot 8$	$1 \cdot 1 \quad 0$		-	0	-	$1 \cdot 1$	$1 \cdot 0$
4	$32 \cdot 6$	$2 \cdot 7$	$13 \cdot 4$		$1 \cdot 2$	$13 \cdot 9$	$1 \cdot 2 \quad 0$		-	0	-	$-2 \cdot 2$	$1 \cdot 0$
5	$37 \cdot 8$	$1 \cdot 7$	$17 \cdot 2$		$0 \cdot 7$	$13 \cdot 2$	$0.7 \quad 2.9$		$1 \cdot 3$	-2.4	$1 \cdot 0$	-0.4	$0 \cdot 8$
6	$26 \cdot 1$	$2 \cdot 0$	$17 \cdot 0$		0.9	$12 \cdot 1$	$0 \cdot 9 \quad 0$		-	0	-	-3.8	$1 \cdot 0$
7	$50 \cdot 9$	11.7	$6 \cdot 2$		$4 \cdot 0$	$16 \cdot 1$	$4 \cdot 3-10 \cdot 6$		$6 \cdot 1$	$-6 \cdot 3$	$6 \cdot 6$	1.6	$3 \cdot 7$
8	$23 \cdot 0$	$7 \cdot 8$	$11 \cdot 2$		$3 \cdot 5$	$13 \cdot 9$	$3 \cdot 30$		-	0	-	0	-
9	$44 \cdot 7$	$4 \cdot 6$	21.9		2-1	$22 \cdot 4$	$2 \cdot 0 \quad 0$	0	-	0	-	1.4	$1 \cdot 8$

* Atomic coordinates are in fractions of cell edges. Isotropic temperature factors and coordinates were taken from the 0.050 calculation. Anisotropic thermal parameters are of the form $\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$ and were taken from the 0.043 calculation. Anisotropic temperature factors and errors have been multiplied by 10^{4} for the tabulation.
\dagger Atom designation given for $\mathrm{C}_{4} \mathrm{AlB}_{24}$ by Will (1969).

Table 2. Peak heights from $R_{F}=0.050$ Fourier*

	Type	Height	e. \AA^{-3}	Site multiplicity	Apparent fractional occupancies
1	B(icosahedron)	2293	4.96	8	0.99
2	B(icosahedron)	2208	4.78	8	0.96
3	B(icosahedron)	2404	50	8	1.04
4	Bicosahedron)	2348	5.08	8	1.02
5	B(icosahedron)	2299	4.98	16	1.00
6	C	2780	6.02	8	1.00
7	Al	433	0.94	16	0.07
8	Al	1129	2.44	4	0.19
9	B	1697	3.67	4	0.73
10	Al	110	0.24	8	0.02

* $1 \mathrm{e} . \AA^{-3}$ was taken to be $1 / 5$ the average height of atoms $1-5$.

Table 3. Interatomic distances $(\AA)^{*}$

Atoms	Distance	Atoms	Distance
B-B intraicosahedral	$3-7$	2.204	
$1-^{\prime}$	1.838	$3-7^{\prime}$	1.993
$1-3$	1.840	$3-10$	1.867
$1-5$	1.823	$4-7$	2.145
$2-2^{\prime}$	1.817	$4-10$	2.104
$2-5$	1.817	$5-7$	1.974
$3-4$	1.813	$5-7^{\prime}$	2.133
$3-5$	1.823	$5-8$	2.060
$4-5$	1.784	$5-10$	2.194

* Only distances about equal to or less ther the sum of the atomic radii are reported. Individual standard deviations can be calculated from the standard errors given for the coordinates and cell edges. The random standard error for $\mathrm{B}-\mathrm{B}$ and $\mathrm{C}-\mathrm{B}$ bond lengths is about $0.003 \AA$ while those for $\mathrm{Al}-\mathrm{B}$ and $\mathrm{Al}-\mathrm{C}$ range up to $0.02 \AA$.

Table 3 (cont.)

2-5	i. 817
5-5'	$1 \cdot 784$
B- B intericosahedral	
1-2'	$1 \cdot 773$
B-C	
4-6	1.620
5-6	$1 \cdot 625$
6-9	$1 \cdot 467$
B(C)-Al	
1-7	2.017
1-8	1.949
1-10	1.946
2-7	$2 \cdot 186$
2-8	1.955
2-10	$2 \cdot 261$

$6-7$	1.768
$6-7^{\prime}$	2.015
$6-8$	2.104
$6-10$	1.755
$7-9$	1.200
$\mathrm{Al}-\mathrm{Al}$	
$7-7^{\prime}$	1.204
$7-7^{\prime \prime}$	2.076
$7-7^{\prime \prime \prime}$	2.400
$7-10$	2.189
$8-10$	1.236
$10-10^{\prime}$	2.304

were tested by refining the multipliers of those sites, but no significant changes were detected. R_{F} remained at $0 \cdot 050$. Anisotropic refinement gave a final R_{F} of 0.043 ; however, such refinement is questionable for a structure with partially occupied sites. For completeness, the anisotropic temperature factors are given in Table 1.

A final three-dimensional electron density map was calculated from the $R_{F}=0.050$ parameters; peak heights and atom assignments are shown in Table 2. With the assumption that the average B peak height corresponds to $5 \mathrm{e} . \AA^{-3}$, the C position contains $6 \cdot 02 \mathrm{e} . \AA^{-3}$, confirming full occupancy at that site.

Table 4(a). Observed and calculated structure amplitudes*

* Calculated from the $R_{F}=0.050$ parameters. Scattering curves for B, C and Al were obtained from International Tables for X-ray Crystallography (1962). The final scale factor, by which $F_{\text {ealc }}$ is multiplied to place it on the observed scale is $1 \cdot 023$.

Table 4(b). Unobserved* and calculated structure amplitudes

Site 9 gives 2.94 B atoms, while 7 and 8 yield 1.15 and $0.75 \AA 1$ atoms respectively. This nine-atom structure then leads to the stoichiometry $\mathrm{C}_{8} \mathrm{Al}_{2 \cdot 0} \mathrm{~B}_{51}$ which increases the calculated density of $2.42 \mathrm{~g} . \mathrm{cm}^{-3}$ for $\mathrm{C}_{4} \mathrm{AlB}_{24}$, $Z=2$ to the more agreeable value $2.52 \mathrm{~g} . \mathrm{cm}^{-3}$. Inclusion of the extremely small peak (10) yields $\mathrm{C}_{8} \mathrm{Al}_{2 \cdot 15} \mathrm{~B}_{51}$ and a calculated density of $2.53 \mathrm{~g} . \mathrm{cm}^{-3}$. Our empirical formula therefore, is quite close to $\mathrm{C}_{8} \mathrm{Al}_{2} \mathrm{~B}_{52}$, the stoichiometry of the ideal ternary compound of Hoard \& Hughes.

Discussion

Final atomic coordinates, isotropic temperature factors and atom multipliers from the $R_{F}=0.050$ data are shown in Table 1. It should be noted that the temperature factors of the B atoms are reasonable and selfconsistent. Interatomic distances are given in Table 3. Observed and calculated structure amplitudes are shown in Table 4.

The crystal structure, viewed along the a and c axes (Fig.2), clearly reveals distorted hexagonal close packing of B icosahedra. Sixfold coordination about each icosahedral B atom is completed by C in two symmetrydistinct instances and by a B atom from an adjacent icosahedron in the remaining two cases. Thus, six of the icosahedral B atoms form B-B bonds and six form $\mathrm{B}-\mathrm{C}$ bonds. Boron atoms on a partially occupied center of symmetry complete a tetrahedral environment for C (Table 5) and develop linear C-B-C chains similar to those found in rhombohedral boron carbide. In addition, C links three icosahedra to form a three-dimensional network. This type of bonding is reminiscent of that found in boron carbide; the analogy is enhanced by a comparison of bond distances for the two structures (Table 6). All B-B and B-C bonds in $\mathrm{C}_{8} \mathrm{Al}_{2.1} \mathrm{~B}_{51}$ are only 0.02 to $0.05 \AA$ longer than those in boron carbide, supporting the suggestion (Hoard \& Hughes, 1967) that this ternary phase is in fact an aluminum stabilized twinned derivative of the more simple boron carbide. The suggestion is strengthened further by the observation that ' $\mathrm{C}_{4} \mathrm{AlB}_{24}$ ' undergoes a topotactic transition with loss of Al at about $2000^{\circ} \mathrm{C}$ to the boron carbide structure (Giese, Economy \& Matkovich, 1966). This type of transition now seems reasonable since similar intericosahedral bonding exists for both structures; however, the details of the mechanism are still not entirely clear. Use of the stoichiometry $\mathrm{C}_{4} \mathrm{AlB}_{24}$ (Matkovich, Economy \& Giese, 1964; Will, 1969) with C-Al-C chains does not lead to as direct an interpretation of this transition.

Table 5. Tetrahedral angles about carbon

[^1]| Atoms | Angle |
| :--- | ---: |
| $4-6-5$ | $115 \cdot 8^{\circ}$ |
| $4-6-9$ | 99.6 |
| $5-6-5^{\prime}$ | $118 \cdot 7$ |
| $5-6-9$ | 100.8 |

Fig.2. (a) The crystal structure of $\mathrm{C}_{8} \mathrm{Al}_{2 \cdot 1} \mathrm{~B}_{51}$ as viewed along $d(001)$. (b) As viewed along $d(100)$.

Table 6. Comparison of average bond distances between $\mathrm{C}_{8} \mathrm{Al}_{2 \cdot 1} \mathrm{~B}_{51}$ and boron carbide

\quad Bond type	$\mathrm{C}_{8} \mathrm{Al}_{2 \cdot 1} \mathrm{~B}_{51}$	Boron carbide*
B-B(icosahedral)	1.816	1.789
B-B(intericosahedral)	1.774	1.718
B(icosahedron)-C	1.623	1.604
B(chain)-C	1.467	1.435
\quad * Values taken from Hoard \& Hughes,	1967.	

Questions as to the stabilizing role of Al now arise quite naturally. As stated earlier, all Al atoms are on partially occupied sites in vacancies between icosahedra. One of these atoms competes statistically with the B atom of the $\mathrm{C}-\mathrm{B}-\mathrm{C}-$ chain while the remaining Al atoms are irregularly coordinated to B atoms at distances ranging from 1.76 to $2.26 \AA$. All Al-B and $\mathrm{Al}-\mathrm{C}$ nearest neighbor contacts are shorter than the sum of the covalent atomic radii by approximately $0 \cdot 2-0 \cdot 3 \AA$. Hence, whereas the boron and carbon framework is expanded with respect to boron carbide, aluminum is apparently in sterically forcing positions. At first, one might suspect that Al atoms contribute electronically to the stability of the structure by donating electrons. Such a view would be consistent with the approximate valence theory for boron carbide which predicts closedshell B_{12}^{2-} icosahedra linked to $(\mathrm{C}-\mathrm{C}-\mathrm{C})^{2+}$ chains (Lon-guet-Higgins \& Roberts, 1955); a slight modification, in accord with recent investigations, formally gives $\mathrm{B}_{11} \mathrm{C}^{-}$icosahedra and ($\left.\mathrm{C}-\mathrm{B}-\mathrm{C}\right)^{+}$chains with no loss of generality. For our structure with B_{12} icosahedra and $\mathrm{C}-\mathrm{B}-\mathrm{C}$ chains, the electron count is one short of satisfying the theory, suggesting a role for Al. However, the boron carbide of composition $\mathrm{B}_{13} \mathrm{C}_{2}$ which also contains B_{12} icosahedra and $C-B-C$ chains, exists in the simple rhombohedral modification as an ordered
chemical compound (Hoard \& Hughes, 1967) and so arguments based on electron donor behavior for Al should be regarded with circumspectiom. The role of Al, be it dominated by steric, electronic, thermodynamic or kinetic considerations, will be understood completely only after more information becomes available.

For a thorough discussion of the boron-rich phases which treats many of the topics considered here more fully, the reader is referred to a recent review article (Hoard \& Hughes, 1967).

We thank Professor W.N.Lipscomb for helpful discussions on much of the subject matter. We also thank Dr Joel Shappirio for performing the electron microprobe analyses.

References

Giese, R. F., Economy, J. \& Matкovich, V. I. (1966). Acta Cryst. 20, 697.
Hoard, J. L. \& Hughes, R. E. (1967). The Chemistry of Boron and its Compounds. Ch. 2. Ed. E. Muetterties. New York: John Wiley.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kohn, J. A., Katz, G. \& Giardini, A. A. (1958). Z. Kristallogr. 111, 53.
Lipscomb, W. N. \& Britton, D. (1960). J. Chem. Phys. 33, 275.

Longuet-Higgins, H. C. \& Roberts, M. de V. (1955). Proc. Roy. Soc. A230, 110.
Matkovich, V. I., Economy, J. \& Giese, R. F. (1964). J. Amer. Chem. Soc. 86, 2337.

Will, G. (1963). J. Amer. Chem. Soc. 85, 2335.
Will, G. (1966). Nature, Lond. 212, 175.
Will, G. (1967). Acta Cryst. 23, 1071.
Will, G. (1969). Acta Cryst. B25, 1219.

Acta Cryst. (1969). B25, 1229

Die Struktur eines Phosphor(III,V)-Sulfids der ungefähren Zusammensetzung $\mathbf{P}_{\mathbf{4}} \mathbf{S}_{\mathbf{9}}$.

Von Waltraud Hilmer
Institut für anorganische Chemie der Deutschen Akademie der Wissenschaften, Rudower Chaussee, 1199 Berlin, Deutschland

(Eingegangen am 24. Juni 1968)
$\mathrm{P}_{4} \mathrm{~S}_{9}$ II crystallizes in space group $I a 3\left(a=17.60 \AA\right.$). The molecules are very similar to the $\mathrm{P}_{4} \mathrm{O}_{9}$ molecule: 4 P atoms at the corners of a trigonal pyramid are linked by 6 S atoms; the remaining three S are terminal S atoms attached to $3 P$ atoms.

Einleitung

In der Literatur wurden die Strukturen von Phosphor-Schwefel-Verbindungen der Zusammensetzung $\mathrm{P}_{4} \mathrm{~S}_{3}$ (van Houten, Vos \& Wiegers, 1955; Leung, Waser, van Houten, Vos, Wiegers \& Wiebenga, 1957), $\mathrm{P}_{4} \mathrm{~S}_{5}, \mathrm{P}_{4} \mathrm{~S}_{7}$
und $\mathrm{P}_{4} \mathrm{~S}_{10}$ (van Houten \& Wiebenga, 1957; Vos \& Wiebenga, 1955; Vos, Olthof, van Bolhuis \& Botterweg, 1965) in zwei- bzw. dreidimensionaler Verfeinerung bereits eingehend beschrieben.

Meisel (1968) fand eine neue Phosphorsulfidphase der Zusammensetzung $\mathrm{P}_{4} \mathrm{~S}_{8,5}-\mathrm{P}_{4} \mathrm{~S}_{9}$, in der etwa 25% als

[^0]: * Present address: Union Carbide Research Institute, Box 278, Tarrytown, N. Y. U.S.A.
 \dagger Present address: Chemistry Department, Rutgers, The State University, New Brunswick, N.J. U.S.A.

[^1]: * All unobserved structure amplitudes have a value of 25 , approximately one-half the value of the lowest observed structure amplitude.

